Group action and some applications

Bijan Taeri

October 30,2024

Table of contents

- **1** Representation of groups
- **2** Group action on sets
	- Representations and actions
	- Basic concepts and results
	- Vertex transitive graphs and Cayley graphs
	- Examples

3 Group action on groups

- **•** Semi-direct product
- Relative holomorph
- Wreath product

Let *X* be an algebraic structure and Aut(*X*) be the group of the automorphisms of *X*.

- $\alpha \in \text{Aut}(X)$ if and only if $\alpha: X \to X$ is a permutation which preserves the operations of *X*.
- Aut(*X*) is a subgroup of Sym(*X*), the symmetric group on *X*.

Example

- If *X* is a set (an algebraic structure with no operations), then $Aut(X) = Sym(X).$
- \bullet If *K* is a group, then $Aut(K) = \{ \alpha \in \text{Sym}(K) \mid \forall x, y \in K, \ \alpha(xy) = \alpha(x)\alpha(y) \}.$
- If *V* is a vector space, then $\mathrm{Aut}(V) = \mathrm{GL}(V)$, the group of invertible linear transformations of *V*.

Definition

Let *G* be a group and *X* be an algebraic structure. A representation of *G* is a homomorphism $\varphi : G \longrightarrow \text{Aut}(X)$.

(We say that *G* acts on *X*.)

If *X* is just a set, then φ is called a permutation representation.

If *X* is a vector space, then φ is called a linear representation.

- For all $g \in G$, $\varphi(g) \in \text{Aut}(X)$.
- $\varphi(1) = \mathrm{id}_X$.
- For all $g, h \in G$, $\varphi(gh) = \varphi(g)\varphi(h)$.

Representation of groups Group action on sets Group action on groups Representations and actions Basic concepts and results Vertex transitive graphs and Cayley graphs Examples

Let $\varphi : G \longrightarrow \mathrm{Sym}(X)$ be a permeation representation of group G on a set *X*. For $g \in G$, we denote $\varphi(g)$ by φ_g . For all $x \in X$ and *g, h ∈ G*,

(1)
$$
\varphi_1 = \text{id}_X \implies \varphi_1(x) = x
$$
,

(2)
$$
\varphi_{gh} = \varphi_g \varphi_h \Longrightarrow \varphi_{gh}(x) = \varphi_g(\varphi_h(x)).
$$

 T *hus there is a function* $(g, x) \mapsto gx := \varphi_g(x)$ such that for all *x ∈ X* and *g, h ∈ G*,

$$
(1') 1x = x,
$$

$$
(2') (gh)x = g(hx).
$$

In this case we say *G* acts (from left) on *X*.

Representations and actions Basic concepts and results Vertex transitive graphs and Cayley graphs Examples

 $Conversely if there is a function *f*$ $(g, x) \mapsto g \cdot x$ such that for all $x \in X$ and $g, h \in G$, $(1')$ $1 \cdot x = x$,

$$
(2') (gh) \cdot x = g \cdot (h \cdot x),
$$

 λ *e* λ *s* \colon $X \to X$ $x \mapsto g \cdot x$ is a permutation

on *X* and $\lambda: G \longrightarrow \text{Sym}(X)$ $g \mapsto \lambda_g$ is a homomorphism.

Representation of groups Group action on sets Group action on groups Representations and actions Basic concepts and results Vertex transitive graphs and Cayley graphs Vertex tra
Examples

Let *G* acts on a set *X* and let φ : $G \longrightarrow \text{Sym}(X)$ be the corresponding permutation representation.

- $\ker \varphi = \bigcap_{x \in X} \operatorname{stab}(x)$, where $\operatorname{stab}(x) = \{ g \in G \mid g x = x \}.$
- The relation *x ∼ y ⇐⇒ ∃g ∈ G, y* = *gx* is an equivalence relation on *X*.
- The action is called transitive (or *G* is transitive) if there exists $x \in X$ such that $X = \text{orb}(x)$.
- The action is called faithful (or *G* is faithful) if $\ker \varphi = \{1\}$.
- The action is called regular (or *G* is regular) if it is faithful and transitive.

Representations and actions Basic concepts and results Vertex transitive graphs and Cayley graphs Examples

Orbit-Stabilizer Theorem

 $|\text{orb}(x)| = |G : \text{stab}(x)|$. In particular if *G* is finite, then $|\text{orb}(x)|$ divides *|G|*.

Theorem

If X is finite, then $|X| = |X_f| + \sum_{i=1}^k |G \tildot \mathrm{stab}(x_i)|$, where X_f is the set of orbits of size 1, and $\{ \text{stab}(x_1), \ldots, \text{stab}(x_k) \}$ is the set of all orbits of size *≥* 2. In particular if *G* is a finite *p*-group, then *|X| ≡ |X^f |* (mod *p*).

Representations and actions Basic concepts and results Vertex transitive graphs and Cayley graphs Examples

Example (Left regular action)

A group *G* acts on $X = G$, by left multiplication. The $corresponding$ permutation representation is $g \mapsto \mathcal{L}_g$,

where $L_{\mathcal{g}}:G\rightarrow G$ $x \mapsto gx$

The action is faithful and $G \cong L_G = \{L_g \mid g \in G\}$ ≤ Sym(*G*). (Cayley, 1854)

This action is transitive, since for all $x, y \in G$,

$$
y = (yx^{-1})x = L_{yx^{-1}}(x).
$$

 $\begin{aligned} \Box\rightarrow\left\{ \frac{\partial}{\partial t}\right\} &\rightarrow\left\{ \frac{\partial}{\partial t}\right\} &\rightarrow\left\{ \frac{\partial}{\partial t}\right\} \end{aligned}$. . . ogo **Bijan Taeri Group action and some applications**

Basic concepts and results Vertex transitive graphs and Cayley graphs Examples

Representations and actions

Vertex transitive

Let $\Gamma = (V, E)$ be a simple graph. Then

$$
Aut(\Gamma) = \{ \alpha \in Sym(V) \mid \forall x, y \in V, \ x \sim y \Longleftrightarrow \alpha(x) \sim \alpha(y) \}
$$

acts on *V* naturally: $\alpha x = \alpha(x)$.

- Γ is called vertex transitive if Aut(Γ) acts transitively on *V*.
- If Γ is vertex transitive, then Γ is regular (all vertices have the same degree).

Representations and actions Basic concepts and results Vertex transitive graphs and Cayley graphs Examples

An easy way to construct vertex transitive graphs

Cayley graph (Cayley, 1878)

Let G be a group and $S \subseteq G$, such that $S = S^{-1}$ and $1 \not\in S$. The Cayley graph Γ := Cay(*G, S*) is a simple graph and defined as follows:

$$
V(\Gamma) = G \quad \text{and} \quad E(\Gamma) = \{ (g, gs) \mid s \in S \}.
$$

$$
g, h \in G, \ \ g \sim h \Longleftrightarrow g^{-1}h \in S.
$$

Cay(*G, S*) is a simple graph *|S|*-regular and it is connected if and only if $G = \langle S \rangle$.

.

Basic concepts and results Vertex transitive graphs and Cayley graphs Example

Representations and action

Theorem (Sabidussi, 1958)

A graph Γ is a Cayley graph if and only if Aut(Γ) contains a regular subgroup.

Let $\Gamma = \text{Cay}(G, S)$. For all $g, x, y \in G$

$$
\begin{array}{rcl}\nx \sim y & \iff & x^{-1}y \in S \Longleftrightarrow (gx)^{-1}gy \in S \Longleftrightarrow gx \sim gy \\
& \iff & L_g(x) \sim L_g(y)\n\end{array}
$$

Thus $G \cong L_G = \{L_g \mid g \in G\} \leq \text{Aut}(\Gamma)$. Thus $\text{Aut}(\Gamma)$ contains a regular subgroup. (In particular Cay(*G, S*) is vertex transitive.)

 \Box σ $\mathbb{R} \mapsto \mathcal{A} \mathbb{R} \mapsto$. . Conversely if a group *G* acts regularly on the vertices of a graph Γ, then Γ is the Cayley graph of *G* relative to some subset of *S* of *G*, $\text{with } S = S^{-1} \text{ and } 1 \not\in S.$

Basic concepts and results Vertex transitive graphs and Cayley graphs Examples

Example (A generalization of the left regular action)

Let *H* ≤ *G*. Then *G* acts on *X* = { xH | $x \in G$ }, the set of left cosets of *H* in *G*, by left multiplication. The corresponding $\mathsf{permutation}$ representation is $\rho: \mathsf{G} \longrightarrow \mathrm{Sym}(X)$ $g \mapsto \rho_g$, where $\rho_{g}: X \rightarrow X$

 $xH \mapsto g(xH) = gxH$.

We have $\mathrm{stab}(xH) = xHx^{-1}$ and $\mathrm{ker}\rho = H_G = \bigcap_{x \in G} xHx^{-1}$, the core of *H* in *G*, so G/H_G is (isomorphic to) a subgroup of $\text{Sym}(X)$.

Basic concepts and results Vertex transitive graphs and Cayley graphs Examples

Example (Conjugation action)

. A group *G* acts on $X = G$, by conjugation. The corresponding $($ automorphism) representation is $g \mapsto \tau_g$ $\tau: G \longrightarrow \text{Aut}(G)$, where $\tau_g: \mathit{G} \rightarrow \mathit{G}$ $x \mapsto gxg^{-1}$ • The kernel if the action is $Z(G) = \{ g \in G \mid \forall x, xg = gx \}$, the center of *G* and $G/Z(G) \cong \text{Im}(\tau) = \text{Inn}(G)$. The class equation is $|G| = |Z(G)| + \sum_{i=1}^{k} |G:C_G(x_i)|$. \bullet If *G* is a finite *p*-group, then $|G|$ ≡ $|Z(G)|$ (mod *p*) and so *Z*(*G*) is non-trivial. **Bijan Taeri Group action and some applications**

Representation of groups Group action on sets Group action on groups Representations and actions Basic concepts and results Vertex transitive graphs and Cayley graphs Examples

Sylow's First Theorem (Sylow, 1872)

Let *G* be a finite group and $|G| = p^n m$, where *p* is prime and $p \nmid m$. Then there exists a subgroup *P* of *G* such that $|P| = p^n$.

Thus Syl*^p* (*G*), the set of Sylow *p*-subgroups of *G* is non-empty.

P ∈ Syl_p(*G*) \Longleftrightarrow *P* is a *p* − subgroup and *p* ∤ |*G* : *P*|.

Basic concepts and results Vertex transitive graphs and Cayley graphs Examples

Representations and actions

Sylow's Second Theorem

Let *G* be a finite group and $P,H\in {\rm Syl}_p(\mathit{G}).$ Then there exists $g\in\mathcal{G}$ such that $H=gPg^{-1}.$ Hence the action of \mathcal{G} on $\mathrm{Syl}_p(\mathcal{G}),$ by conjugation, is transitive.

Proof. Put $X = \{xP \mid x \in G\}$. Thus *p* does not divide $|X| = |G : P|$. Now *H* acts on *X*: $h(xP) = hxP$.

 $\textsf{Since} \ |\mathcal{X}| \equiv |\mathcal{X}_f| \ \text{(mod } p), \ |\mathcal{X}_f| \neq 0 \ \text{and there exists} \ xP \in \mathcal{X} \ \text{such}$ that $orb(xP) = \{xP\}$. Thus

$$
\forall h \in H, hxP = xP \iff \forall h \in H, x^{-1}hx \in P
$$

$$
\iff H \le xPx^{-1}
$$

$$
\iff H = xPx^{-1}.
$$

Sylow's Third Theorem

Let *G* be a finite group. $n_p \equiv 1 \pmod{p}$, where $n_p = |\mathrm{Syl}_p(G)|$.

Proof. Put $P \in \mathrm{Syl}_p(G)$. Then P acts on $X = \mathrm{Syl}_p(G)$ by conjugation. It is easy to see that $X_f = \{P\}$ and so $|X_f| = 1.$ Now since $|X| \equiv |X_f|$ (mod *p*), we have $n_p \equiv 1$ (mod *p*).

Semi-direct product Relative holomorph Wreath product

(Internal) Semi-direct product

 $\Box \rightarrow \neg \leftarrow \Box$ $\begin{aligned} \mathbf{C} &\geq \mathbf{C} \rightarrow \mathbf{C} \end{aligned}$. . Let *K* be a normal subgroup of *G* and $H \le G$ such that $G = KH$ and *H ∩ K* = *{*1*}*. Then *H* acts on *K* by conjugation. The corresponding representation is *^τ* : *^H −→* Aut(*K*) $h \mapsto \tau_h$, where *τ^h* : *K → K* $k \mapsto k^h := hkh^{-1}$ The multiplication in *G*: $(k_1h_1)(k_2h_2) = k_1h_1k_2h_1^{-1}h_1h_2 = k_1\tau_{h_1}(k_2)h_1h_2 = (k_1k_2^{h_1})(h_1h_2),$ We say that *G* is a semi-direct product of *K* by *H* and write $G = K \rtimes H = K \rtimes_{\tau} H$.

Semi-direct product Relative holomorph Wreath product

(External) Semi-direct product

Let *H* and *K* be arbitrary groups such that *H* acts *K*. Let the corresponding representation be $\varphi : H \longrightarrow \text{Aut}(K)$ $h \mapsto \varphi_h$.

Then we define a multiplication in $G = K \times H$ (denote $\varphi_h(k)$ by k^h)

$$
(k_1,h_1)(k_2,h_2)=(k_1\varphi_{h_1}(k_2),h_1h_2)\quad \Bigl(=(k_1k_2^{h_1},h_1h_2)\Bigr).
$$

Then *G* is a group. We call it semi-direct product of *K* by *H* and write $G = K \rtimes_{\varphi} H$.

It is easy to see that *G* is the internal semi-direct product of $\overline{K} = \{(k,1) | k \in K\}$ by $\overline{H} = \{(1,h) | h \in H\}$ and $G = \overline{K} \rtimes_{\tau} \overline{H}$.

.

Semi-direct product Relative holomorph Wreath product

Groups of order *pq*

Let $H = \langle h \rangle \cong \mathbb{Z}_3$ and $K = \langle k \rangle \cong \mathbb{Z}_7$. Then $\text{Aut}(K) \cong \mathbb{Z}_6$ and H acts on $K: \begin{array}{c} \varphi: H \longrightarrow \mathrm{Aut}(K) \end{array}$ $h \mapsto \varphi_h$, *φ^h* : *K −→ K* $k \mapsto k^2$ The semi direct product $K \rtimes H = \langle h, k \mid h^3 = 1, k^7 = 1,$ *φh*(*k*) $\overline{hkh^{-1}} = k^2$, of *K* by *H* is the unique non abelian group of order 21. More generally every non-abelian group of order *pq*, where *p* and *q* are primes, $p < q$, and $q \equiv 1 \pmod{p}$, is of the form $\langle h, k | h^p = 1, k^q = 1, hkh^{-1} = k^r \rangle,$

where $r \not\equiv 1 \pmod{q}$ and $r^p \equiv 1 \pmod{q}$.

.

Let *K* be a subgroup of Aut(*G*). Then *K* acts naturally on *G*: *∀α* $∈$ *K*, *∀x* $∈$ *G*, *αx* = *α*(*x*). Thus we can form the semi-direct product

$$
W = G \rtimes K = \{x\alpha \mid x \in G, \ \alpha \in K\},\
$$

Semi-direct product Relative holomorph Wreath product

with respect to this action. *W* is called the relative holomorph.

The holomorph of *G* is

$$
\mathrm{Hol}(G)=G\rtimes \mathrm{Aut}(G)=\{x\alpha\mid x\in G,\,\,\alpha\in \mathrm{Aut}(G)\}.
$$

$$
(x\alpha)(y\beta)=x\alpha(y)\alpha\beta,
$$

Semi-direct product Relative holomorph Wreath product

Generalized dihedral group

Let *A* be an abelian group. Assume that there exists *a ∈ A* with *a* ² *̸*= 1. Then *η* : *a 7→ a −*1 is a non-identity automorphism and $\eta^2=1.$ We can form the relative holomorph

$$
\mathrm{Dih}(A)=A\rtimes\langle\eta\rangle=\{a\eta^j\mid a\in A,\ j\in\{0,1\}\},\
$$

the generalized dihedral group.

$$
(a\eta)(b\eta) = a\eta(b)\eta\eta = ab^{-1}
$$

$$
(a\eta)^2 = (a\eta)(a\eta) = a\eta(a)\eta\eta = aa^{-1} = 1
$$

$$
D_{2n} = Dih(\mathbb{Z}_n), \qquad D_{\infty} = Dih(\mathbb{Z})
$$

Bigan Taret **Group action and some applications**

Representation of groups Group action on sets Group action on groups Semi-direct product Relative holomorph Wreath product

Let *G* be a group. Let *H* be a group acting on a set *X*. Then *H* acts on

$$
G^X = \{f \mid f : X \to G\}
$$

of all sequence of elements of *G* indexed by *X*, which is group $(fg(x) = f(x)g(x))$. For all $h \in H$ and $f \in G^X$, $f^h := h \cdot f \in G^X$, where

$$
f^h(x) = (h \cdot f)(x) = f(h^{-1}x) \ \left(f = (g_x)_{x \in X}, \ h \cdot f = (g_{h^{-1}x})_{x \in X} \right).
$$

 $\textsf{The semi-direct product} \,\, W = \textsf{G} \wr H = G^X \rtimes H \,\, \text{of} \,\, G^X \,\, \text{by} \,\, H \,\, \text{is}$ called, the wreath product of *G* and *H*.

\n
$$
(fh)(gk) = fg^h \, hk
$$
\n
$$
\left(\frac{g}{g}\right)^{1/2} \left(\frac{g}{g}\right)^{1/2} \left(\frac{g}{g}\right)^{1/2} \left(\frac{g}{g}\right)^{1/2} \left(\frac{g}{g}\right)^{1/2}
$$
\n

\n\n Signal T (Group action and some applications)\n

Representation of groups Group action on sets Group action on groups Semi-direct product Relative holomorph Wreath product

Let *G* be any group. The group $Sym(n)$ acts on $X = \{1, 2, ..., n\}$. Now

$$
G^X = \{(g_1,\ldots,g_n) \mid g_i \in G\}
$$

and for all $\sigma \in \text{Sym}(n)$,

$$
\sigma\cdot(g_1,\ldots,g_n)=(g_{\sigma^{-1}(1)},\ldots,g_{\sigma^{-1}(n)}).
$$

$$
W = G \wr S_n = G^X \rtimes S_n = \{ (g_1, \ldots, g_n) \sigma \mid g_i \in G, \ \sigma \in S_n \}
$$

$$
(a_1, \ldots, a_n) \alpha(b_1, \ldots, b_n) \beta = (a_1, \ldots, a_n) (b_1, \ldots, b_n)^{\alpha} \alpha \beta
$$

$$
= (a_1 b_{\alpha^{-1}(1)}, \ldots, a_n b_{\alpha^{-1}(n)}) \alpha \beta
$$

. . .

Semi-direct product Relative holomorph Wreath product

Theorem (Frucht, 1949)

Let a finite graph Γ be the disjoint union of *n* copies of a connected graph *H*. Then

 $Aut(\Gamma) = Aut(H) \wr Sym(n).$

. **Bijan Taeri Group action and some applications**

THANK YOU

Representation of groups Group action on sets Group action on groups Semi-direct product Relative holomorph Wreath product