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Group action on groups

Let X be an algebraic structure and Aut(X ) be the group of the

automorphisms of X .

α ∈ Aut(X ) if and only if α : X → X is a permutation which

preserves the operations of X .

Aut(X ) is a subgroup of Sym(X ), the symmetric group on X .
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Example

If X is a set (an algebraic structure with no operations), then

Aut(X ) = Sym(X ).

If K is a group, then

Aut(K ) = {α ∈ Sym(K ) | ∀x , y ∈ K , α(xy) = α(x)α(y)}.

If V is a vector space, then Aut(V ) = GL(V ), the group of

invertible linear transformations of V .
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Definition

Let G be a group and X be an algebraic structure. A

representation of G is a homomorphism φ : G −→ Aut(X ).

(We say that G acts on X .)

If X is just a set, then φ is called a permutation representation.

If X is a vector space, then φ is called a linear representation.

For all g ∈ G , φ(g) ∈ Aut(X ).

φ(1) = idX .

For all g , h ∈ G , φ(gh) = φ(g)φ(h).
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Basic concepts and results
Vertex transitive graphs and Cayley graphs
Examples

Let φ : G −→ Sym(X ) be a permeation representation of group G

on a set X . For g ∈ G , we denote φ(g) by φg . For all x ∈ X and

g , h ∈ G ,

(1) φ1 = idX =⇒ φ1(x) = x ,

(2) φgh = φgφh =⇒ φgh(x) = φg (φh(x)).

Thus there is a function
G × X −→ X

(g , x) 7→ gx := φg (x)
such that for all

x ∈ X and g , h ∈ G ,

(1’) 1x = x ,

(2’) (gh)x = g(hx).

In this case we say G acts (from left) on X .
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Examples

Conversely if there is a function
· : G × X −→ X

(g , x) 7→ g · x
such that for

all x ∈ X and g , h ∈ G ,

(1’) 1 · x = x ,

(2’) (gh) · x = g · (h · x),

then for all g ∈ G , the function
λg : X → X

x 7→ g · x
is a permutation

on X and
λ : G −→ Sym(X )

g 7→ λg
is a homomorphism.
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Examples

Let G acts on a set X and let φ : G −→ Sym(X ) be the

corresponding permutation representation.

kerφ =
∩

x∈X stab(x), where stab(x) = {g ∈ G | gx = x}.

The relation x ∼ y ⇐⇒ ∃g ∈ G , y = gx is an equivalence

relation on X .

The action is called transitive (or G is transitive) if there

exists x ∈ X such that X = orb(x).

The action is called faithful (or G is faithful) if kerφ = {1}.

The action is called regular (or G is regular) if it is faithful

and transitive.
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Vertex transitive graphs and Cayley graphs
Examples

Orbit-Stabilizer Theorem

|orb(x)| = |G : stab(x)|. In particular if G is finite, then |orb(x)|
divides |G |.

Theorem

If X is finite, then |X | = |Xf |+
∑k

i=1 |G : stab(xi )|, where Xf is

the set of orbits of size 1, and {stab(x1), . . . , stab(xk)} is the set

of all orbits of size ≥ 2. In particular if G is a finite p-group, then

|X | ≡ |Xf | (mod p).
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Example (Left regular action)

A group G acts on X = G , by left multiplication. The

corresponding permutation representation is
L : G −→ Sym(G )

g 7→ Lg
,

where
Lg : G → G

x 7→ gx

The action is faithful and G ∼= LG = {Lg | g ∈ G} ≤ Sym(G ).

(Cayley, 1854)

This action is transitive, since for all x , y ∈ G ,

y = (yx−1)x = Lyx−1(x).
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Vertex transitive

Let Γ = (V ,E ) be a simple graph. Then

Aut(Γ) = {α ∈ Sym(V ) | ∀x , y ∈ V , x ∼ y ⇐⇒ α(x) ∼ α(y)}

acts on V naturally: αx = α(x).

Γ is called vertex transitive if Aut(Γ) acts transitively on V .

If Γ is vertex transitive, then Γ is regular (all vertices have the

same degree).
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Examples

An easy way to construct vertex transitive graphs

Cayley graph (Cayley, 1878)

Let G be a group and S ⊆ G , such that S = S−1 and 1 ̸∈ S . The

Cayley graph Γ := Cay(G , S) is a simple graph and defined as

follows:

V (Γ) = G and E (Γ) = {(g , gs) | s ∈ S}.

g , h ∈ G , g ∼ h ⇐⇒ g−1h ∈ S .

Cay(G , S) is a simple graph |S |-regular and it is connected if and

only if G = ⟨S⟩.
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Theorem (Sabidussi, 1958)

A graph Γ is a Cayley graph if and only if Aut(Γ) contains a

regular subgroup.

Let Γ = Cay(G ,S). For all g , x , y ∈ G

x ∼ y ⇐⇒ x−1y ∈ S ⇐⇒ (gx)−1gy ∈ S ⇐⇒ gx ∼ gy

⇐⇒ Lg (x) ∼ Lg (y)

Thus G ∼= LG = {Lg | g ∈ G} ≤ Aut(Γ). Thus Aut(Γ) contains a

regular subgroup. (In particular Cay(G , S) is vertex transitive.)

Conversely if a group G acts regularly on the vertices of a graph Γ,

then Γ is the Cayley graph of G relative to some subset of S of G ,

with S = S−1 and 1 ̸∈ S .
Bijan Taeri Group action and some applications



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Representation of groups
Group action on sets

Group action on groups

Representations and actions
Basic concepts and results
Vertex transitive graphs and Cayley graphs
Examples

Example (A generalization of the left regular action)

Let H ≤ G . Then G acts on X = {xH | x ∈ G}, the set of left

cosets of H in G , by left multiplication. The corresponding

permutation representation is
ρ : G −→ Sym(X )

g 7→ ρg
, where

ρg : X → X

xH 7→ g(xH) = gxH.

We have stab(xH) = xHx−1 and kerρ = HG =
∩

x∈G xHx−1, the

core of H in G , so G/HG is (isomorphic to) a subgroup of Sym(X ).
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Example (Conjugation action)

A group G acts on X = G , by conjugation. The corresponding

(automorphism) representation is
τ : G −→ Aut(G )

g 7→ τg
, where

τg : G → G

x 7→ gxg−1

The kernel if the action is Z (G ) = {g ∈ G | ∀x , xg = gx},
the center of G and G/Z (G ) ∼= Im(τ) = Inn(G ).

The class equation is |G | = |Z (G )|+
∑k

i=1 |G : CG (xi )|.

If G is a finite p-group, then |G | ≡ |Z (G )| (mod p) and so

Z (G ) is non-trivial.
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Sylow’s First Theorem (Sylow, 1872)

Let G be a finite group and |G | = pnm, where p is prime and

p ∤ m. Then there exists a subgroup P of G such that |P | = pn.

Thus Sylp(G ), the set of Sylow p-subgroups of G is non-empty.

P ∈ Sylp(G ) ⇐⇒ P is a p − subgroup and p ∤ |G : P |.
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Sylow’s Second Theorem

Let G be a finite group and P ,H ∈ Sylp(G ). Then there exists

g ∈ G such that H = gPg−1. Hence the action of G on Sylp(G ),

by conjugation, is transitive.

Proof. Put X = {xP | x ∈ G}. Thus p does not divide

|X | = |G : P|. Now H acts on X : h(xP) = hxP.

Since |X | ≡ |Xf | (mod p), |Xf | ̸= 0 and there exists xP ∈ X such

that orb(xP) = {xP}. Thus

∀h ∈ H, hxP = xP ⇐⇒ ∀h ∈ H, x−1hx ∈ P

⇐⇒ H ≤ xPx−1

⇐⇒ H = xPx−1.
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Sylow’s Third Theorem

Let G be a finite group. np ≡ 1 (mod p), where np = |Sylp(G )|.

Proof. Put P ∈ Sylp(G ). Then P acts on X = Sylp(G ) by

conjugation. It is easy to see that Xf = {P} and so |Xf | = 1.

Now since |X | ≡ |Xf | (mod p), we have np ≡ 1 (mod p).
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(Internal) Semi-direct product

Let K be a normal subgroup of G and H ≤ G such that G = KH

and H ∩ K = {1}. Then H acts on K by conjugation. The

corresponding representation is
τ : H −→ Aut(K )

h 7→ τh
, where

τh : K → K

k 7→ kh := hkh−1

The multiplication in G :

(k1h1)(k2h2) = k1h1k2h
−1
1 h1h2 = k1τh1(k2)h1h2 = (k1k

h1
2 )(h1h2),

We say that G is a semi-direct product of K by H and write

G = K ⋊ H = K ⋊τ H.
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(External) Semi-direct product

Let H and K be arbitrary groups such that H acts K . Let the

corresponding representation be
φ : H −→ Aut(K )

h 7→ φh
.

Then we define a multiplication in G = K × H

(denote φh(k) by kh)

(k1, h1)(k2, h2) = (k1φh1(k2), h1h2)
(
= (k1k

h1
2 , h1h2)

)
.

Then G is a group. We call it semi-direct product of K by H and

write G = K ⋊φ H.

It is easy to see that G is the internal semi-direct product of

K = {(k, 1) | k ∈ K} by H = {(1, h) | h ∈ H} and G = K ⋊τ H.
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Groups of order pq

Let H = ⟨h⟩ ∼= Z3 and K = ⟨k⟩ ∼= Z7. Then Aut(K ) ∼= Z6 and H

acts on K :
φ : H −→ Aut(K )

h 7→ φh
,

φh : K −→ K

k 7→ k2
.

The semi direct product

K ⋊ H = ⟨h, k | h3 = 1, k7 = 1,

φh(k)︷ ︸︸ ︷
hkh−1 = k2⟩,

of K by H is the unique non abelian group of order 21.

More generally every non-abelian group of order pq, where p and q

are primes, p < q, and q ≡ 1 (mod p), is of the form

⟨h, k | hp = 1, kq = 1, hkh−1 = k r ⟩,

where r ̸≡ 1 (mod q) and rp ≡ 1 (mod q).
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Let K be a subgroup of Aut(G ). Then K acts naturally on G :

∀α ∈ K , ∀x ∈ G , αx = α(x). Thus we can form the semi-direct

product

W = G ⋊ K = {xα | x ∈ G , α ∈ K},

with respect to this action. W is called the relative holomorph.

The holomorph of G is

Hol(G ) = G ⋊Aut(G ) = {xα | x ∈ G , α ∈ Aut(G )}.

(xα)(yβ) = xα(y)αβ,
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Generalized dihedral group

Let A be an abelian group. Assume that there exists a ∈ A with

a2 ̸= 1. Then η : a 7→ a−1 is a non-identity automorphism and

η2 = 1. We can form the relative holomorph

Dih(A) = A⋊ ⟨η⟩ = {aηj | a ∈ A, j ∈ {0, 1}},

the generalized dihedral group.

(aη)(bη) = aη(b)ηη = ab−1

(aη)2 = (aη)(aη) = aη(a)ηη = aa−1 = 1

D2n = Dih(Zn), D∞ = Dih(Z)
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Let G be a group. Let H be a group acting on a set X . Then H

acts on

GX = {f | f : X → G}

of all sequence of elements of G indexed by X , which is group

(fg(x) = f (x)g(x)). For all h ∈ H and f ∈ GX , f h := h · f ∈ GX ,

where

f h(x) = (h · f )(x) = f (h−1x)
(
f = (gx)x∈X , h · f = (gh−1x)x∈X

)
.

The semi-direct product W = G ≀ H = GX ⋊ H of GX by H is

called, the wreath product of G and H.

(fh)(gk) = fgh hk
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Let G be any group. The group Sym(n) acts on X = {1, 2, . . . , n}.
Now

GX = {(g1, . . . , gn) | gi ∈ G}

and for all σ ∈ Sym(n),

σ · (g1, . . . , gn) = (gσ−1(1), . . . , gσ−1(n)).

W = G ≀ Sn = GX ⋊ Sn = {(g1, . . . , gn)σ | gi ∈ G , σ ∈ Sn}

(a1, . . . , an)α(b1, . . . , bn)β = (a1, . . . , an)(b1, . . . , bn)
ααβ

= (a1bα−1(1), . . . , anbα−1(n))αβ

Bijan Taeri Group action and some applications
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Theorem (Frucht, 1949)

Let a finite graph Γ be the disjoint union of n copies of a

connected graph H. Then

Aut(Γ) = Aut(H) ≀ Sym(n).
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THANK YOU
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