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M. R. VEDADI

Abstract. In this lecture we state some but important applica-
tions of the concept “nilpotency” in math.

Let R be an associative ring that means:

(R,+) is an additive group, and
∀a, b, c ∈ R, a(bc) = (ab)c, a(b+ c) = ab+ ac, (b+ c)a = ba+ ca.

Definition 0.1. An element a ∈ R is called nilpotent if ∃n ≥ 1, such that an = 0.

The set of all nilpotent elements of R is denoted by nil(R).

Example 0.2. If A = (aij)n×n such that aij = 0 for i ≥ j then An = 0.

Definition 0.3. Let ∅ 6= X ⊆ R. Then X is called;

1) right ideal (left ideal): X ≤ (R,+) and XR ⊆ X (RX ⊆ X), and ideal if it is
both right and left ideal (write X �R).

2) nilpotent: ∃n ≥ 1 Xn = 0, or equivalently, ∃n ≥ 1, ∀x1, · · · , xn ∈ X we have
x1x2 · · ·xn = 0.

3) (right) T-nilpotent: ∀ x1, x2, · · · ∈ X ∃n ≥ 1 such that xnxn−1 · · ·x1 = 0. (“T” for
transfinite)

4) nil: ∀x ∈ X, ∃nx ≥ 1 such that xnx = 0, and nil(R) = the set of all nilpotent elements
of R.

nilpotent ⇒ T-nilpotent ⇒ nil

1



2 M. R. VEDADI

Lemma 0.4. If x, y ∈ nil(R) and xy = yx then xy, x + y ∈ nil(R). Furthermore,

if R is commutative then for all I � R,
√
I = {x ∈ R |∃nx ≥ 1, xnx ∈ I}. Hence,

nil(R/I) =
√
I/I and nil(R) =

√
(0).

Example 0.5. 1) If R = Z2 ×Z22 ×Z23 × · · · then nil(R) is a nil ideal but the index of
nilpotency in R has not bounded.

2) For n ≥ 2, Zn ' Z/ < n >. nil(Zn) ↔ {x |∃k ≥ 1, n|xk}.

Example 0.6. If R = Z2 × Z22 × Z23 × · · · then nil(R) is a nil ideal but the index of
nilpotency in R has not bounded.

Köthe Conjecture: R has no nonzero nil ideal ⇒ R has no nonzero nil one sided
ideal.

Note: I is a nil one sided ideal of R ⇒ I ⊆ J(R). J(R) = the intersection of all
maximal right(left) ideals of R.

J. Levitzki (1939) unpublished, (1950) published, proved that if right ideals in R are
finitely generated then Köthe conjecture is true.

Theorem 0.7. The following statements are equivalent to the Köthe conjecture.
(1) The sum of two nil right (left) ideal is a nil right (left) ideal.
(2) If I is a nil ideal of R then so is the ideal Mn(I) in the ring Mn(R) for all n ≥ 1.
(3) If I is a nil ideal of R then so is the ideal I[x] ⊆ J(R[x].
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Algebraic Geometry Points:

K is field, R = K[x1, ..., xn] and V = K × · · · ×K = K(n). ∀f = f(x1, ..., xn) ∈ R and
p = (a1, ..., an) ∈ V , we write f.p = f(a1, ..., an).

Let ∀I � R, V (I) = {p ∈ V | Ip = 0} and ∀U ⊆ V , I(U) = {f ∈ R | fU = 0} . Then
we have:

{I �R |
√
I = I} ←→ {I �R | nil(R/I) = 0} ←→ {V (I) | I �R} ⊆ V .

The set of {V (I) I � R} form the closed subsets of a topology on V , named “ Zariski
topology”.

If R = F [x], f(x) := f ∈ R, I =< f >= fR. Consider f = Pα1
1 · · ·Pαt

t where Pi is a
prime element in F [x], then nil(R/I) = 0 ⇔ αi = 1 ∀i.

If A ∈ Matn×n(F ), then ∃0 6= f(x) ∈ F [x] such that F [A] ' F [x]/ < f(x) > where
f(A) = 0 with minimum degree. Thus if F is algebraically closed, then nil(R/I) = 0 ⇔
A = P−1DP for some diagonal matrix D.

Derivation algebra Points:

D : R → R is called a derivation if ∀x, y ∈ R, D(x + y) = D(x) + D(y) and
D(xy) = xD(y) +D(y)x.

Example 0.8. 1) If K is field, R = K[x1, ..., xn] and D = ∂/∂xi.

2) For any ring R and x ∈ R, define adx : R → R with adx(y) = xy − yx. adx is
called inner derivation on R.

Note that if D = ∂/∂xi and degreexi of f < m then Dm(f) = 0. Thus if xi = y and
f =

∑
n any

n then we can compute ak = Dk(0)/k!.

Charles Lanski and W.S. Martindale et al. Study derivations D on R such
that there are extension R ≤ Q and q ∈ Q with D(x) = qx− xq ∀x ∈ R. Since

(adq)
n(x) =

∑
i+j=n

(−1)j
(
n

j

)
qixqj

hence if qn = 0 then (adq)
n = 0. Martindale showed that if (adq)

n = 0 then
∃ λ ∈ Cent(Q) such that q − λ is a nilpotent element. Note adq = adq−λ.
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Homological points :

Definition 0.9. Let R be a ring. An abelian group (M,+) is called right R-module. If
there is action M ×R :→M such that

∀a, b ∈ R and x, y ∈M, (xa)b = x(ab), x(a+ b) = xa+ xb, (x+ y)a = xa+ ya

.

Theorem 0.10 (H. Bass 1960). The following statements are equivalent for a ring R.
(1) Every right R-module has a projective cover.
(2) R/J(R) isomorphic to a finite direct product of matrices over division rings and J(R)
is a right T-nilpotent.

If P is a projective R-module (i.e., ∃Q, P × Q ' R(Λ)) and ∃f : P → M such that
Ker(f) is small in P (i.e., (Ker(f) +N = P )⇒ N = P ), then P is called a “projective
cover” for M .

· · · → P1
f1→ Ker(f) ⊆ P0 = P

f→M . Then we obtain a projective resolution for M ,
· · ·Pn → · · · → P1 → P0 = P →M

Fine rings, T.Y. Lam (2016). R is called fine if

∀x ∈ R, ∃u ∈ U(R), a ∈ nil(R), x = u+ a

Dimension and Torsion Theory points :

dim(M) ≤ dim(N) + dim(M/N) and dim(R) = SupM{dim(M)}

N,M/N ∈ C ⇒M ∈ C
For any I �R with MI = 0, we have L(MR) = L(MR/I). Now if In = 0 we have:

M ⊇MI ⊇MI2 ⊇ · · · ⊇MIn = 0

and all MI i/MI i+1 are R/I-module. In commutative case R.
-dim(R) = SupP{dim(RP )} for every prime ideal P . Here, RP = {a/b | a ∈ R, b 6∈ P}.
- for every prime ideal P , ⇒ RP is a ring with unique maximal ideal.
- R is a ring with maximal ideal I ⇒ R/In is a ring with nilpotent maximal ideal
(n ≥ 1).
- R is a ring with maximal ideal I such that In = 0 ⇒ R/I = F is a field and all
MI i/MI i+1 are vector space on F .
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T-nilpotent ideals:

Definition 0.11. A nonzero R-module M is said to be weak-generator whenever

HomR(M,X) = 0⇒ X = 0

For any R-module M , let annR(M) = {x ∈ R | Mx = 0}.

Theorem 0.12 (Smith-Vedadi 2006). Let R be a ring Morita equivalent to commutative
ring.
(i) A finitely generated R-module M is weak-generator ⇐⇒ annR(M) is T-nilpotent.

(ii) An ideal I is T-nilpotent ⇔ the ideal I[x] is T-nilpotent ⇔ the ideal Matn(I) is
T-nilpotent (n ≥ 1).
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