NILPOTENCY IN MATH.

M. R. VEDADI

ABSTRACT. In this lecture we state some but important applications of the concept "**nilpotency**" in math.

Let R be an associative ring that means:

(R, +) is an additive group, and $\forall a, b, c \in R, \ a(bc) = (ab)c, \ a(b+c) = ab + ac, (b+c)a = ba + ca.$

Definition 0.1. An element $a \in R$ is called **nilpotent** if $\exists n \geq 1$, such that $a^n = 0$.

The set of all nilpotent elements of R is denoted by nil(R).

Example 0.2. If $A = (a_{ij})_{n \times n}$ such that $a_{ij} = 0$ for $i \ge j$ then $A^n = 0$.

Definition 0.3. Let $\emptyset \neq X \subseteq R$. Then X is called;

1) right ideal (left ideal): $X \leq (R, +)$ and $XR \subseteq X$ ($RX \subseteq X$), and ideal if it is both right and left ideal (write $X \leq R$).

2) **nilpotent**: $\exists n \geq 1 \ X^n = 0$, or equivalently, $\exists n \geq 1, \forall x_1, \dots, x_n \in X$ we have $x_1x_2 \cdots x_n = 0$.

3) (right) T-nilpotent: $\forall x_1, x_2, \dots \in X \exists n \ge 1 \text{ such that } x_n x_{n-1} \dots x_1 = 0.$ ("T" for transfinite)

4) nil: $\forall x \in X, \exists n_x \ge 1 \text{ such that } x^{n_x} = 0, \text{ and } nil(R) = \text{the set of all nilpotent elements of } R.$

nilpotent
$$\Rightarrow$$
 T-nilpotent \Rightarrow nil

Lemma 0.4. If $x, y \in nil(R)$ and xy = yx then $xy, x + y \in nil(R)$. Furthermore, if R is commutative then for all $I \leq R$, $\sqrt{I} = \{x \in R \mid \exists n_x \geq 1, x^{n_x} \in I\}$. Hence, $nil(R/I) = \sqrt{I}/I$ and $nil(R) = \sqrt{(0)}$.

Example 0.5. 1) If $R = \mathbb{Z}_2 \times \mathbb{Z}_{2^2} \times \mathbb{Z}_{2^3} \times \cdots$ then nil(R) is a nil ideal but the index of nilpotency in R has not bounded.

2) For $n \ge 2$, $\mathbb{Z}_n \simeq \mathbb{Z}/\langle n \rangle$. $\operatorname{nil}(\mathbb{Z}_n) \leftrightarrow \{x \mid \exists k \ge 1, n \mid x^k\}$.

Example 0.6. If $R = \mathbb{Z}_2 \times \mathbb{Z}_{2^2} \times \mathbb{Z}_{2^3} \times \cdots$ then nil(R) is a nil ideal but the index of nilpotency in R has not bounded.

Köthe Conjecture: R has no nonzero nil ideal \Rightarrow R has no nonzero nil one sided ideal.

Note: I is a nil one sided ideal of $R \Rightarrow I \subseteq J(R)$. J(R) = the intersection of all maximal right(left) ideals of R.

J. Levitzki (1939) unpublished, (1950) published, proved that if right ideals in R are finitely generated then Köthe conjecture is true.

Theorem 0.7. The following statements are equivalent to the Köthe conjecture. (1) The sum of two nil right (left) ideal is a nil right (left) ideal. (2) If I is a nil ideal of R then so is the ideal $M_n(I)$ in the ring $M_n(R)$ for all $n \ge 1$. (3) If I is a nil ideal of R then so is the ideal $I[x] \subseteq J(R[x])$.

Algebraic Geometry Points:

K is field, $R = K[x_1, ..., x_n]$ and $V = K \times \cdots \times K = K^{(n)}$. $\forall f = f(x_1, ..., x_n) \in R$ and $p = (a_1, ..., a_n) \in V$, we write $f \cdot p = f(a_1, ..., a_n)$.

Let $\forall I \leq R, V(I) = \{p \in V \mid Ip = 0\}$ and $\forall U \subseteq V, I(U) = \{f \in R \mid fU = 0\}$. Then we have:

$$\{I \leq R \mid \sqrt{I} = I\} \longleftrightarrow \{I \leq R \mid nil(R/I) = 0\} \longleftrightarrow \{V(I) \mid I \leq R\} \subseteq V.$$

The set of $\{V(I) \mid I \leq R\}$ form the closed subsets of a *topology* on V, named "Zariski topology".

If R = F[x], $f(x) := f \in R$, $I = \langle f \rangle = fR$. Consider $f = P_1^{\alpha_1} \cdots P_t^{\alpha_t}$ where P_i is a prime element in F[x], then $\operatorname{nil}(R/I) = 0 \Leftrightarrow \alpha_i = 1 \quad \forall i$.

If $A \in Mat_{n \times n}(F)$, then $\exists 0 \neq f(x) \in F[x]$ such that $F[A] \simeq F[x]/\langle f(x) \rangle$ where f(A) = 0 with minimum degree. Thus if F is algebraically closed, then $\operatorname{nil}(R/I) = 0 \Leftrightarrow A = P^{-1}DP$ for some diagonal matrix D.

Derivation algebra Points:

 $D: R \to R$ is called a **derivation** if $\forall x, y \in R$, D(x+y) = D(x) + D(y) and D(xy) = xD(y) + D(y)x.

Example 0.8. 1) If K is field, $R = K[x_1, ..., x_n]$ and $D = \partial/\partial x_i$.

2) For any ring R and $x \in R$, define $ad_x : R \to R$ with $ad_x(y) = xy - yx$. ad_x is called inner derivation on R.

Note that if $D = \partial/\partial x_i$ and degree_{x_i} of f < m then $D^m(f) = 0$. Thus if $x_i = y$ and $f = \sum_n a_n y^n$ then we can compute $a_k = D^k(0)/k!$.

Charles Lanski and W.S. Martindale et al. Study derivations D on R such that there are extension $R \leq Q$ and $q \in Q$ with $D(x) = qx - xq \ \forall x \in R$. Since

$$(ad_q)^n(x) = \sum_{i+j=n} (-1)^j \binom{n}{j} q^i x q^j$$

hence if $q^n = 0$ then $(ad_q)^n = 0$. Martindale showed that if $(ad_q)^n = 0$ then $\exists \lambda \in Cent(Q)$ such that $q - \lambda$ is a nilpotent element. Note $ad_q = ad_{q-\lambda}$.

Homological points :

Definition 0.9. Let R be a ring. An abelian group (M, +) is called right R-module. If there is action $M \times R :\to M$ such that

$$\forall a, b \in R \text{ and } x, y \in M, \ (xa)b = x(ab), \ x(a+b) = xa+xb, \ (x+y)a = xa+ya$$

Theorem 0.10 (H. Bass 1960). The following statements are equivalent for a ring R. (1) Every right R-module has a projective cover. (2) R/J(R) isomorphic to a finite direct product of matrices over division rings and J(R) is a right T-nilpotent.

If P is a projective R-module (i.e., $\exists Q, P \times Q \simeq R^{(\Lambda)}$) and $\exists f : P \to M$ such that Ker(f) is small in P (i.e., $(Ker(f) + N = P) \Rightarrow N = P)$, then P is called a "projective cover" for M.

$$\cdots \to P_1 \xrightarrow{f_1} Ker(f) \subseteq P_0 = P \xrightarrow{f} M$$
. Then we obtain a projective resolution for M ,
 $\cdots P_n \to \cdots \to P_1 \to P_0 = P \to M$

Fine rings, T.Y. Lam (2016). R is called *fine* if

 $\forall x \in R, \exists u \in U(R), a \in nil(R), \ x = u + a$

Dimension and Torsion Theory points :

 $dim(M) \leq dim(N) + dim(M/N)$ and $dim(R) = Sup_M \{dim(M)\}$

 $N, M/N \in C \Rightarrow M \in C$

For any $I \leq R$ with MI = 0, we have $L(M_R) = L(M_{R/I})$. Now if $I^n = 0$ we have:

$$M \supseteq MI \supseteq MI^2 \supseteq \cdots \supseteq MI^n = 0$$

and all MI^i/MI^{i+1} are R/I-module. In commutative case R. - $dim(R) = Sup_{\{dim(R_P)\}}$ for every prime ideal P. Here, $R_P = \{a/b \mid a \in R, b \notin P\}$. - for every prime ideal P, $\Rightarrow R_P$ is a ring with unique maximal ideal.

- R is a ring with maximal ideal $I \Rightarrow R/I^n$ is a ring with nilpotent maximal ideal $(n \ge 1)$.

- R is a ring with maximal ideal I such that $I^n = 0 \Rightarrow R/I = F$ is a field and all MI^i/MI^{i+1} are vector space on F.

.

T-nilpotent ideals:

Definition 0.11. A nonzero *R*-module *M* is said to be weak-generator whenever $Hom_R(M, X) = 0 \Rightarrow X = 0$

For any *R*-module *M*, let $ann_R(M) = \{x \in R \mid Mx = 0\}.$

Theorem 0.12 (Smith-Vedadi 2006). Let R be a ring Morita equivalent to commutative ring.

(i) A finitely generated R-module M is weak-generator $\iff ann_R(M)$ is T-nilpotent.

(ii) An ideal I is T-nilpotent \Leftrightarrow the ideal I[x] is T-nilpotent \Leftrightarrow the ideal $Mat_n(I)$ is T-nilpotent $(n \ge 1)$.

E-mail address: mrvedadi@iut.ac.ir

DEPARTMENT OF MATHEMATICAL SCIENCES, ISFAHAN UNIVERSITY OF TECHNOLOGY, 84156-83111, ISFAHAN, IRAN